
www.manaraa.com

University of Miami
Scholarly Repository

Open Access Theses Electronic Theses and Dissertations

2007-01-01

Treatment of Instance-Based Classifiers Containing
Ambiguous Attributes and Class Labels
Hans Mullinnix Holland
University of Miami, cdholland@gmail.com

Follow this and additional works at: https://scholarlyrepository.miami.edu/oa_theses

This Open access is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarly Repository. It has been accepted for
inclusion in Open Access Theses by an authorized administrator of Scholarly Repository. For more information, please contact
repository.library@miami.edu.

Recommended Citation
Holland, Hans Mullinnix, "Treatment of Instance-Based Classifiers Containing Ambiguous Attributes and Class Labels" (2007). Open
Access Theses. 84.
https://scholarlyrepository.miami.edu/oa_theses/84

https://scholarlyrepository.miami.edu?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/etds?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlyrepository.miami.edu/oa_theses/84?utm_source=scholarlyrepository.miami.edu%2Foa_theses%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository.library@miami.edu

www.manaraa.com

Library Rights Statement

In presenting the Thesis, Treatment of Instance-Based Classifiers Containing Am-

biguous Attributes and Class Labels, in partial fulfillment of the requirements for

an advanced degree at the University of Miami , I agree that the Library shall

make it freely available for inspection. I further agree that permission for copying,

as provided for by the Copyright Law of the United States (Title 17, U.S. Code),

of this Thesis for scholarly purposes may be granted by the Librarian. It is under-

stood that any copying or publication of this Thesis for financial gain shall not be

allowed without my written permission.

I hereby grant permission to the University of Miami Libraries to use my

Thesis for scholarly purposes.

Hans M. Holland

Date

www.manaraa.com

UNIVERSITY OF MIAMI

TREATMENT OF INSTANCE-BASED CLASSIFIERS CONTAINING
AMBIGUOUS ATTRIBUTES AND CLASS LABELS

By

Hans M. Holland

A THESIS

Submitted to the Faculty
of the University of Miami

in partial fulfillment of the requirements for
the degree of Master of Science

Coral Gables, Florida

December 2007

www.manaraa.com

UNIVERSITY OF MIAMI

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

TREATMENT OF INSTANCE-BASED CLASSIFIERS CONTAINING
AMBIGUOUS ATTRIBUTES AND CLASS LABELS

Hans M. Holland

Approved:

Dr. Miroslav Kubat Dr. Terri A. Scandura
Professor of Electrical and Dean of the Graduate School
Computer Engineering

Dr. Mei-Ling Shyu Dr. Peter Tarjan
Professor of Electrical and Professor of Biomedical Engineering
Computer Engineering

www.manaraa.com

HOLLAND, HANS M. (M.S., Electrical and Computer Engineering)
Treatment of Instance-Based (December 2007)
Classifiers Containing Ambiguous
Attribute and Class Labels

Abstract of a thesis at the University of Miami.

Thesis supervised by Professor Miroslav Kubat.
No. of pages in text. (78)

The importance of attribute vector ambiguity has been largely overlooked by

the machine learning community. A pattern recognition problem can be solved in

many ways within the scope of machine learning. Neural Networks, Decision Tree

Algorithms such as C4.5, Bayesian Classifiers, and Instance Based Learning are

the main algorithms. All listed solutions fail to address ambiguity in the attribute

vector. The research reported shows, ignoring this ambiguity leads to problems

of classifier scalability and issues with instance collection and aggregation. The

Algorithm presented accounts for both ambiguity of the attribute vector and class

label thus solving both issues of scalability and instance collection. The research

also shows that when applied to sanitized data sets, suitable for traditional instance

based learning, the presented algorithm performs equally as well.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Dr. Miroslav

Kubat for his patience and expert guidance and aid while I undertook this journey.

Through his work as a professor and researcher I have come to respect and enjoy

the path being cut through science by people like him. He opened my eyes to a

world of research I never thought possible and encouraged me to be better than I

thought I could.

I have to thank my family because without their love and support none of this

would have been possible.

I would also like to thank my wife Lauren Holland for her love and support in

those dark times of frustration and long nights. There are few people that could

have put up with what I had to do. . .

iii

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 Introduction . 1

1.1 Ambiguity is all around us . 1

1.2 Statement of Problem . 3

1.3 Accuracy and ambiguity . 5

1.4 Organization of the Thesis . 6

2 Previous Research . 7

3 Formulation of Problem . 21

3.1 Ambiguity in Attribute Vectors 21

3.2 Handling Ambiguity in k-Nearest Neighbor classifiers 23

3.2.1 Vector-to-Vector Similarity 24

3.2.2 Voting Mechanism . 28

4 Experimental Procedure . 31

4.1 Description of Data Sets/Files 31

4.2 Generation of Test Data . 33

4.2.1 Network Intrusion Detection System Data 34

4.2.2 Synthetic Data Set . 35

4.2.3 Experimental Procedure 39

4.2.4 Results . 41

iv

www.manaraa.com

Page

v

5 Conclusion . 73

LIST OF REFERENCES . 77

www.manaraa.com

LIST OF TABLES

Table Page

1 Ambiguous Attribute Vector . 7

2 Ambiguous Attribute Vector . 21

3 Three training examples from the IDS Domain. Some attribute
values are ambiguous. 22

4 Table shows an example of a testing and training attribute vectors . 25

5 Ambiguous class labels from a k-NN classifier 28

6 Voting for the class label based on the nearest neighbors listed . . . 29

7 Illustration of IDS Data Definition 34

8 Micro and Macro Definitions . 40

9 AmbA-performance for different cut-off points and k-values as eval-
uated on synthetic domain with AAmb = 30%. 41

vi

www.manaraa.com

LIST OF FIGURES

Figure Page

1 A Neuron . 8

2 A Hopfield Artificial Neuron . 10

3 Decision Tree Example . 12

4 Two Data Points . 27

5 One Data Point One Data Range 27

6 Two Data Ranges . 27

7 This decision tree was used to classify a synthetic domain. 36

8 Instead of pruning, the leaf nodes were combined to generate an
ambiguous class label. This synthetic tree was then used to
re-classify its corresponding domain. 37

9 This decision tree was used to classify a more complex synthetic
domain. 37

10 Instead of pruning, the leaf nodes were combined to generate an
ambiguous class label. This synthetic tree was then used to
re-classify its corresponding domain. 38

11 Comparing the performance of k-AmbigNN with that of k-NN on
the IDS domain. 43

12 Macro Precision vs. number of neighbors for k-AmbigNN and k-NN. 44

13 Macro Recall vs. number of neighbors for k-AmbigNN and k-NN. . 45

14 Macro F1 vs. number of neighbors for k-AmbigNN and k-NN. . . . 46

15 Micro Precision vs. number of neighbors for k-AmbigNN and k-NN. 47

16 Micro Recall vs. number of neighbors for k-AmbigNN and k-NN. . 47

17 Micro F1 vs. number of neighbors for k-AmbigNN and k-NN. 48

vii

www.manaraa.com

Figure Page

viii

18 Comparing the performance of k-AmbigNN with that of k-NN on
the university Domain. 49

19 Macro Precision vs. number of neighbors for k-AmbigNN and k-NN. 50

20 Macro Recall vs. number of neighbors for k-AmbigNN and k-NN. . 50

21 Macro F1 vs. number of neighbors for k-AmbigNN and k-NN. . . . 51

22 Micro Precision vs. number of neighbors for k-AmbigNN and k-NN. 52

23 Micro Recall vs. number of neighbors for k-AmbigNN and k-NN. . 53

24 Micro F1 vs. number of neighbors for k-AmbigNN and k-NN. 53

25 Comparison of the performance of k-AmbigNN, k-NN, k-fuzzyNN
on the decision-tree-generated synthetic domains, as measured
for different degrees of ambiguity. 55

26 Comparison of the performance of k-AmbigNN, k-NN, k-fuzzyNN
on the second decision-tree-generated synthetic domains, as mea-
sured for different degrees of ambiguity. 55

27 Macro Precision vs. number of neighbors for k-AmbigNN and k-NN
calculated on the second decision tree domain. 56

28 Macro Recall vs. number of neighbors for k-AmbigNN and k-NN
calculated on the second decision tree domain. 57

29 Macro F1 vs. number of neighbors for k-AmbigNN and k-NN cal-
culated on the second decision tree domain. 57

30 Micro Precision vs. number of neighbors for k-AmbigNN and k-NN
calculated on the second decision tree domain. 58

31 Micro Recall vs. number of neighbors for k-AmbigNN and k-NN
calculated on the second decision tree domain. 59

32 Micro F1 vs. number of neighbors for k-AmbigNN and k-NN calcu-
lated on the second decision tree domain. 59

33 Performance of k-AmbigNN approaches on synthetically introduced
ambiguity on synthetic Boolean domain. 60

www.manaraa.com

Figure Page

ix

34 Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on synthetic Boolean domain. 61

35 Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on synthetic Boolean domain. 61

36 Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on synthetic Boolean domain. 62

37 Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain. . . . 63

38 Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain. . . . 64

39 Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain. . . . 64

40 Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain. . . . 65

41 Performance of k-AmbigNN and k-NN on UCI domains with syn-
thetic ambiguity. 66

42 Performance of k-AmbigNN and k-NN on UCI domains with syn-
thetic ambiguity. 67

43 Performance of k-AmbigNN and k-NN approaches on Tic-Tac-Toe
UCI domain. 68

44 Performance of k-AmbigNN and k-NN approaches on Audiology
UCI domain. 69

45 Performance of k-AmbigNN and k-NN approaches on Hepatitis UCI
domain. 69

46 Performance of k-AmbigNN and k-NN approaches on Mushroom
UCI domain. 70

47 Performance of k-AmbigNN and k-NN approaches on Post Opera-
tive UCI domain. 70

48 Performance of k-AmbigNN and k-NN approaches on Shuttle UCI
domain. 71

www.manaraa.com

Figure Page

x

49 Performance of k-AmbigNN and k-NN approaches on Voting UCI
domain. 71

www.manaraa.com

CHAPTER 1

Introduction

1.1 Ambiguity is all around us

In many classification problems knowledge about a particular outcome is not

known with absolute certainty. An argument can be made that in nature nothing

can be known with absolute certainty, simply based on the fact that the world

around us has so many variables. True reality is a very complex system where it

is impractical, if not impossible, to account for all possible cases. Within Machine

Learning, like other science disciplines, the focus is to model the real world in order

to explain natural phenomena. As scientists and engineers we are charged with

explaining how our environment works in a way that can aid man-kind. To this

end we look for simple solutions to complex problems that can stand the rigors of

scientific experimentation.

This thesis presented brings to light an often overlooked and neglected situ-

ation concerning ambiguously defined attributes for an instance based classifier.

Ambiguity naturally occurs in real world data domains but is often sanitized for

the sake of simplicity. Within the Machine Learning community there is a sense of

inertia considering data domains. It has been the culture that domains have the

ambiguity removed at time of creation. It is the contention of this paper that a

better approach be found concerning this data. Presented here is a simple solution

for accounting for ambiguity without the harmful effects of removing or changing

the domain’s data or underlying data structure.
Webster’s Dictionary defines ambiguity as

"ambiguity n 1: an expression whose meaning cannot

be determined from its context

2: unclearness by virtue of having more than one meaning"

1

www.manaraa.com

2

For purposes of this thesis we will extend the definition of ambiguity on the

second Webster’s definition. Ambiguity will be defined as the partial absence of

specific knowledge about a topic. Complete absence of specific knowledge we define

as ignorance. The ambiguity we are looking to handle is specifically concerns the

input or output for pattern recognition problems. In the attempt to quantify

ambiguity, an ambiguity measure is presented as well as an updated similarity

function for instance based classification. Since ambiguity can exist in the class

label as well as the attribute, a class label voting mechanism is necessary. In

order to measure the performance of this new approach, a performance metric is

suggested dealing with the ambiguity.

Within the area of Machine Learning we are restricting ourselves to systems

that produce classification labels via an input vector or instance. In a classification,

system ambiguity can occur in two places: 1. input vectors (attribute labels), 2.

classification labels. Ambiguity in attribute values has been largely overlooked by

the Machine Learning community. In many cases missing or multiple values for a

particular input test have been excluded or ”sanitized” by picking the most likely

value removing any inherent ambiguity from the domain. Ambiguity within the

classification labels can be expressed by assigning more than one label to a test.

More commonly, the case may be that there is more than one expert responding to a

single set of inputs, thus giving more than one accurate answer with varying results.

This type of ambiguity is very prevalent in many areas of Machine Learning. The

Dempster-Shafer knowledge theory does a good job of defining the knowledge that

can be known about a particular outcome [15]. This, along with Vannoorenberghes

bagging and boosting methodologies, presents a strong solution using the induction

of Belief Decision Trees [18]. In this approach the knowledge is expressed as a

weighting factor that can express a spectrum in knowledge from full knowledge to

www.manaraa.com

3

total ignorance on the frame of discernment [18]. The drawback to this approach

is that it currently only applies to classification labels and not input vectors as we

address here.

The approach taken in this thesis aims at defining and accounting for input

vector or attribute label ambiguity, in a robust, manageable way. Ultimately

the algorithm presented can be included within commercial classification systems

similar to the universal adoption of the C4.5 algorithm [14] designed by J. Ross

Quinlan.

Ambiguity can arise not just in the classification label but also in the input

vectors of the system as well. This ambiguity is a very important part of the

data set. For instance-based classifiers dealing with missing values has always

been a difficult task. If the attribute in question is ignored then that can possibly

unfairly weight the rest of the vector. Ignoring missing values can also produce

over-fitting or under-fitting for systems with few training examples. A missing

value is significant in the fact that it is ”missing” and can show total ignorance

about that particular attribute, instead of ”nothing.” This can not be overlooked

as insignificant in the analysis of expert systems. By accounting for ambiguity in

the input vectors of such a system, you can easily bring to light new data sets that

more accurately model a real world system.

1.2 Statement of Problem

The problem statement for this thesis is the treatment of ambiguity present in

the input vector of an expert system, of the type instance-based classifier. In this

frame of reference it is assumed that a missing value reflects complete ambiguity

about an input vector. With no affinity toward one attribute label, the value is

simply the set of all possible values for the attribute. For discrete data this is

manageable, but in the case of a continuous attribute special considerations are

www.manaraa.com

4

made as discussed later. In order to keep the discussion focussed, discrete valued

attribute labels are handled with the k-Nearest Neighbor classifier methodology.

Missing values have been dealt with for many algorithms, but for the nearest

neighbor classifier the accepted rule was 1. to throw out the instance from the

sample, 2. simply count the attributes being the farthest from the compared data

point, or 3. replace the unknown with the most common value present in the data

set. Sometimes the fact that a particular attribute has a missing value can be

significant, because it can mean there is a lack of knowledge for that set of inputs.

If a situation was being modeled that each successive input was dependent on its

predecessor then the value of the attribute, missing or otherwise, is very significant

in the outcome of the classification. By removing or artificially setting the values,

as is common with one of the mentioned ”unknown value” approaches, erroneous

generalizations can be drawn from the outcome.

The ambiguous attribute/classification label problem grew out of a real world

problem dealing with the evaluation of Computer Network Intrusion Detection

System (IDS) evaluations. In this problem we were looking for a quick and easy

way of evaluating a series of IDSs and determining which one provides the best

solution. In brief, an IDS is used to determine if an event taking place in a

Computer Network system is considered a malicious attack or normal operation.

These systems are used to safeguard our computer networks against potential

attacks. We are interested in finding the system with the fewest false positive

classifications of possible network attacks. We can collect information about the

attacks and classify as a potential attack. For this type of domain the data can be

ambiguous due to the crossover that exists in the types of attacks that are possible.

A presentation and explanation of the data domain is presented in later chapters.

In order to accurately state the problem being addressed by this thesis, the

www.manaraa.com

5

following definitions and assumptions need to be made.

1. Within the field of Machine Learning we are talking about the subset applied

directly to instance-based classifiers, and most specifically to the k-Nearest

Neighbor Classifier (k-NN).

2. Ambiguity is a term meaning some level of knowledge about an outcome of

some task. This ambiguity can be a range from total ignorance to complete

knowledge. The task can be reading an instrument or the outcome of an

expert system such as a decision tree or other classification system.

3. For the scope of this thesis we are focusing on the ambiguity that can arise in

the input vector and classification label for instance-based classification with

k-NN. The implementation of the algorithm discussed applies to instance-

based classifiers specifically but can be generalized and applied to many other

expert systems where similarity calculations are made.

There is a need to account for the significance ambiguity can play in the anal-

ysis of expert systems by accounting for it in the input vectors of said classification

systems.

1.3 Accuracy and ambiguity

We assume the same ambiguity can also be observed in the class labels. For

instance, out of classes C1 . . . C4, the teacher knows that the example is not from

C3 and not from C4, but does not know if it is C1 or C2.

The fact that class labels are ambiguous makes it necessary to redefine the

performance criterion accordingly. Let N be the number of testing examples, let

Ci,known be the set of class labels of the i-th testing example, and let Ci,classif be the

set of class labels given to the i-th testing example by the classifier. We evaluate

www.manaraa.com

6

the classification performance of this classifier by the following formula:

AmbA =
1

N

N
∑

i=1

Acci; where (1)

Acci =
|Ci,known

⋂

Ci,classif |

|Ci,known

⋃

Ci,classif |
(2)

Performance of the system and the approaches presented are also evaluated

using Micro- and Macro F1, where F1 is the average of the Micro- and Macro- Pre-

cision and Recall Calculations. We want to explore what modifications are needed

if the k-Nearest Neighbor classification (k-NN) is to be used in such ”ambiguous”

domains. Three aspects of classical k-NN classifiers need to be modified if the

paradigm is to be applied to ambiguously described data. First of them is the

way similarity between two examples is evaluated, the second relates to the voting

mechanism, and thirdly the manner in which performance is measured is modified

in order to accurately analyze the findings.

1.4 Organization of the Thesis

In this thesis an algorithm dealing with the ambiguity in the attribute labels

and classification labels of an instance-based classification system is presented.

Background research into the workings of instance-based classifications and deal-

ings with ambiguity by other types of systems is presented as a look at the current

state-of-the-art.

The organization of this thesis is as follows: previous research is presented in

chapter 2 followed by the formulation of the issue based on said research. In the

sections following our algorithm dealing with ambiguity is presented for consider-

ation followed by an in depth explanation of experiments and results obtained by

running an implementation of the outlined algorithm. Finally an analysis of the

results is presented along with a list of areas of improvements and future work that

can be explored.

www.manaraa.com

CHAPTER 2

Previous Research

Classification problems, such as pattern recognition problems, have been a big

part of Machine Learning. There are a variety of approaches including, but not

limited to, Neural Networks, Decision Tree Algorithms, Bayesian Classifiers, and

Instance-Based Learning.

A training instance is defined by a formula that represents the combination

of an attribute vector x and a class label C. In a training set each attribute

vector has a class label assigned to it, while testing instances are only defined by

the attribute vector of the unseen case. A pattern recognition algorithm looks

at the unseen testing attribute vector and attempts to assign a known class label

to it. In both cases of training and testing many instances comprise to make a

training data set or testing data set, respectively. The table gives an example of a

non-ambiguous attribute vector.

Table 1. Ambiguous Attribute Vector

Example x

Attribute Ident. Value Label

x1 YELLOW
x2 LARGE
x3 SQUARE

As we take a quick survey of possible solutions to the pattern recognition

problem we find Neural Networks topping the list. This approach is concerned

with two things ”Learning” and ”Generalization” [10]. The principal character-

istics of Neural Networks are the ability to ”learn by example and generalize.”

7

www.manaraa.com

8

[10]. This type of approach is great for solving pattern recognition problems. In

general, neural networks function by first presenting a training set so it can learn

any available patterns. A network or algorithm is successful if it can accurately

classify a presented pattern, not previously encountered during training. This act

of correct classification is also considered successful generalization. This process

is very similar in theory to that of other classification approaches, what sets neu-

ral networks apart is the fact that these networks are concerned with processing

the data and not statistics about the data. Another way this approach differs is

the fact that a network of artificial neurons is used to process the data. This is

considered closer to how the human brain actually functions. A neural network is

composed of many neurons interfaced together. This allows for faster, sometimes

even non-linear, approaches to pattern recognition to be taken.

Concerning artificial Neural Networks we will start our detailed explanation

with a definition of a Neural Network’s building block, the neuron. For the sake

of this discussion w neuron can be a processing element, node, or threshold logic

unit [10]. A model of a neuron is presented.

Figure 1. A Neuron

A Neural Network is an interconnected string of these artificial neurons. As

can be seen from Figure 1 there are four parts that constitute artificial neurons:

www.manaraa.com

9

1. Synaptic Weights Input to the synapses is a continuous values input vector

xER, with each component described as xj for j=1,2,. . . ,n for the form x

= [x1, x2, . . . , xn]T . Each component, xj , is an input to the jth synapses

connected to the neuron q with weights wqj .

2. Summing Function This very simply adds the synaptic weights adjusted

input vector components together.

uq = x1(wq1) + x2(wq2) + . . . + xn(wqn) (3)

Making uq a linear combination of the inputs for synapses q

3. Activation Function The activation function can be linear, non-linear, continuous-

valued, or bipolar. When the function is non-linear it acts to limit the neu-

ron’s output amplitude, typically normalizing to the range [0,1] or [-1,1]. The

simplest activation function for demonstration purposes is a square wave.

4. Threshold Value The Θ is normally applied externally and acts to lower the

cumulative input to the activation function. Theta being threshold and vq

being bias, raising the input. They are related by the following: vq = uq +

Θ.

Mathematically, the artificial neuron can be described by the output of the linear

combiner:

uq =
n

∑

j=1

wqjxj = ~wT
q ~x = ~xwq (4)

Where x is described above as the input vector. wq = [wq1, wq2 . . . , wqn]
T ∈ Rnx1

The output of the Activation Function is

yq = f(vq) = f(uqΘq) (5)

After combining equations 4 and 5 we are left with the simplified equation:

yq = f(
n

∑

j=1

wqjxj − Θq) (6)

www.manaraa.com

10

Most common Neural Networks and artificial neuron discussed today date to a

Hopfield Neuron. A Hopfield Artificial Neuron is described in the following layout

[10].

Figure 2. A Hopfield Artificial Neuron

The alteration in the neuron makes it possible to perform asynchronous paral-

lel processing, creating fully interconnected counter-addressable memory with the

primary function of retrieving stored patterns from the presentation of noisy or

incomplete versions [10].

A decision tree is another way of solving pattern recognition problems. We will

discuss briefly the approach taken by Quinlan when constructing the C4.5 induc-

tion decision tree algorithm. The induction method used is based on information

gain. In general, a decision tree is made up of either a ”leaf” node, indicating

a class label, or a ”decision” node that represents a test to be carried out on a

single attribute [14]. Decision trees for classification follow a divide and conquer

approach, eventually ending in a class label leaf node.

The construction of a decision tree is as follows:

1. Select an attribute to place at the root node

2. Split the data into subsets along the selected attribute. If all class labels in

www.manaraa.com

11

a subset are the same then label the node a leaf and end the process.

3. Repeat steps 1 thru 2 for each subset.

Implicit in this algorithm is the mechanism for deciding which attribute to

put in the first node, or root node. For the C4.5 algorithm Quinlan chose to use

information gain theory to determine the attribute for the decision node. Infor-

mation gain is a probability based approach. The measure of information is also

known as entropy for a system.

Entropy(S) ≡
c

∑

i=1

(−pilog2pi) (7)

where pi is the proportion of S belonging to class i

So the gain of attribute A for a system S is given by:

Gain(S, A) ≡ Entropy(S) −
∑

v∈V ales(A)

|Sv|

|S|
Entropy(Sv) (8)

[12].

We calculate gain for all available attributes and select the one with the largest

value to be assigned as the test for the decision node.

Decision trees can be graphically represented as follows:

Decision based rules can be inferred by following from a previously constructed

decision tree. Through information gain a tree is developed as discussed above.

The tree created represents the training data and is generalized for use on unseen

cases. This generalization may include pruning of the tree for efficiency and ac-

curacy. Pruning refers to the process of simplifying a decision tree by replacing

decision nodes with leaf nodes. The purpose of pruning is to arrive at a simple tree

that can be traversed quickly with a high degree of classification accuracy. C4.5

and later editions have built-in pruning algorithms.

www.manaraa.com

12

AT1

AT2

AT4

AT3

+

+ -

+ -

x y,z

bamo,n

s t,r

Figure 3. Decision Tree Example

There are two ways to prune: pre- and post-pruning techniques. Pre-pruning

implies that when partitioning the training set, for attribute test evaluation, if

there is not the coverage for an attribute then it gets replaced with the class label

at the node. In C4.5 the amount of coverage used in this test is controlled by

a command line input variable. On the other hand, the most common approach

taken for post-pruning is called ”Error Based Pruning” [14]. This approach is

simply replacing a node of a tree with a leaf (class label). The leaf to choose is

the one with most percentage of coverage from the training set, thus reducing the

amount of error introduced due to misclassification. As can be seen, the differences

with regards to post- and pre-pruning are in how the error estimates are estimated

(pre-pruning) or calculated (post-pruning).

Decision trees can handle unknown attribute values. Many ideas have been

suggested from examining probability distributions in order to tell the most likely

candidate value, to excluding the case altogether. C4.5, as an example, ignores the

cases with missing values when calculating gain for a particular attribute. When

partitioning tests are determined, the C4.5 approach is to develop a probability for

www.manaraa.com

13

the test. If it is known, then the value is 1, if unknown, then a weaker statement

is made. The probabilities are used as weights for partitioning purposes. C4.5

assumes that any unknown outcomes are ”distributed probabilistically according

to the relative frequency of known outcomes.” [14]

Another probabilistic approach to classification is Bayesian Classification. The

Bayesian approach to classification is purely statistical. For the purposes of simpli-

fying calculations, we are going to assume a Nave Bayes Classifier Approach [12].

This approach assumes that attribute values are conditionally independent for a

target value. This is a safe assumption since for the purposes of our issues we only

care about the relationship attribute values have within the attribute itself, and

not spanning attributes. The Nave Bayesian Classifier takes the form:

vNB = argmaxvi∈V P (vj)
∏

Pi(ai|vj) (9)

In normal Bayesian classifiers all possible combinations of cases would need to

be seen. With the simplification to the Nave approach little accuracy is lost and the

number of possible calculations reduces tremendously. The number of terms used

in the above formula is calculated by multiplying the number of distinct attributes

by the number of distinct target values [12].

Each possible state of an attribute given a class label has a posterior probabil-

ity associated with it. These are all calculated for the final steps in the algorithm.

For a given attribute the probability of its values yields a given classification.

This probability is independent from the probability of other values for the same

attribute.

Different from both Bayesian and Decision Tree Classification, Instance based

classification takes the approach to pattern recognition from a single instance. As

the simplest algorithm to conceptualize and implement, instance based classifica-

www.manaraa.com

14

tion does not provide an explicit description of the target function when presented

with training examples. Instance based classification algorithms such as k-Nearest

Neighbor[3] and locally weighted regression methods[2] assume the data instances

can be represented in Euclidean space[12]. When a new instance is presented, a

distance calculation is made between the testing instance and every element of

the training space. The training instance with the shortest overall distance from

the testing example is used to classify the unseen instance. Data sets are gen-

erally cleaned or ”sanitized” before they are presented. In the case of missing

values the attribute is either dropped from the measure, or a most frequent value

is substituted. There has been little work done to account for ambiguous attribute

values.

Instance based learning in such algorithms as k-Nearest Neighbor is concep-

tually very easy to understand and implement. Case-based learning, as it is also

termed, is simply storing and retrieving similar cases and comparing them to the

query case. If the stored (training) case is the same or close in value to the query

case then the stored case is used for classification [12]. The main focus of this

thesis is on instance-based classification implemented via the k-Nearest Neighbor

algorithm. A description of this algorithm follows:

Training Algorithm:

For each training example (x, f(x)), add the example to the list training.

Classification Algorithm:

A query instance xq to be classified

• Let x1 . . .xk be the k instances of the training set that are closest to wq

• Return

www.manaraa.com

15

f(xq) = argmax
k

∑

i=1

δ(v, f(xi)) (10)

where δ is a distance formula for each attribute. For discrete valued functions

δ(a, b) = 1 if a = b, otherwise δ(a, b) = 0. [12]

In order to perform the tasks associated with a pattern recognition problem,

the data set must first be defined by an attribute vector. These attribute vectors

consist of values, either discrete or continuous data. The values can be represented

as single items, sets of items, or ranges of values [9].

Neural Networks, Decision Tree Algorithms, Bayesian Classifiers, and Instance

Based Classification are among the main topics described above. All of these

algorithms have the same approach to training data sets. Single value attributes

for attribute vectors have been the standard format. Only recently has the scope

been widened to account for ambiguity in class labels when working with Decision

Trees. The above mentioned approaches assume a sanitized attribute vector and,

except for recent work, expect single valued class labels.

Statistically based pattern recognition solutions include decision tree algo-

rithms such as C4.5 [14]. Algorithms such as the C4.5, approach the pattern

recognition problem from the perspective of the entire training set. In general,

the decision tree classification is a top down, greedy search approach [12]. Since a

series of tests are performed to arrive at a class label, the question is asked ”How

to determine the test as a particular node?” Statistically speaking the attribute

that composes a tree node test is the attribute that reflects the largest information

gain for an arbitrary subset. Based on the ID3 and C4.5 algorithms there is little

room for ambiguity in the attribute values. Progress has been made to account

for ambiguity in the class labels. Decision trees based in part or whole on a class

label represented by a belief function is called a belief decision tree. Belief De-

www.manaraa.com

16

cision trees using the Dempster-Shafer Theory of Evidence seem to be the most

promising attempt at a framework to account for ambiguity in class labels [18, 19].

However, in the experiments performed, ambiguity is restricted to the training

sets and classification labels only. In most cases data sets provided to the decision

tree algorithm are considered sanitized. Missing attribute values are removed in

a variety of ways. The most common approach for decision trees is to replace the

values with the most common value for a given data set [20].

The Dempster-Shafer approach is a generalization of the Bayesian approach

to subjective probabilities [15]. When using the Bayesian theory approach, we are

required to calculate the probability for all the questions of interest, whereas with

using the Dempster-Shafer belief function, we can base degrees of belief (sometimes,

but not always, expressed as probabilities) on the probabilities of a related question.

This approach is based on two ideas: the first is the determination of a degree of

belief from subject probabilities for a related question. Secondly, this approach

is based on Dempster’s approach to combining evidence or degrees of belief when

they are constructed from independent pieces of evidence. The best way to explain

this approach is to cite a simple example in order to convey the nuances.

To illustrate the idea of obtaining degrees of belief for one question
form subjective probabilities for another, suppose I have subjective
probabilities for the reliability of my friend Betty. My probability that
she is reliable is 0.9, and my probability that she is unreliable is 0.1.
Suppose she tells me a limb fell on my car. This statement, which must
be true if she is reliable, is not necessarily false if she is unreliable. So
her testimony alone justifies a 0.9 degree of belief that a limb fell on
my car, but a zero degree of belief (not a 0.1 degree of belief) that no
limb fell on my car. This zero does not mean that I am sure no limb fell
on my car, as a zero probability would; it merely means that Betty’s
testimony gives me no reason to believe that no limb fell on my car.
The 0.9 and the zero together constitute a belief function. [15]

Another purely statistical approach is a Bayes Classifier. This approach typi-

cally requires initial calculations of many probabilities. Nave Bayes Classifiers are

www.manaraa.com

17

very practical for systems with many training examples. This algorithm works

on the assumption that ”the quantities of interest are governed by probability

distributions and that optimal decisions can be made by reasoning about these

probabilities together with observed data.” [12] An extension to the Nave Bayes

Classifier approach that is less restrictive than the assumed attribute conditional

independence is Bayesian Belief Networks [21]. This approach states that condi-

tional independence assumptions can apply to subsets of variables instead of just

all of them. Bayesian Classifiers can be augmented to account for class label ambi-

guity, but again little has been done for attribute values ambiguity. One exception

to this rule is the use of the Dempster-Shafer approach to represent attribute

ambiguity.

Belief Decision Trees refer to decision trees that are constructed from uncertain

data. This uncertainty is restricted to the construction phase of the decision tree,

furthermore, to the classification labels for that tree. This all stems from the

training set only. The adapted decision tree construction method makes use of the

Transferable Belief Model [21] and extended to use the Dempster-Shafer Theory of

belief functions [19] for representing unknown class labels. In the approach taken

by Vannoorenberghe, the focus is on simplifying the k-class problem into a two

class problem with the focus on ”one-against-all” [19] as to comparisons and class

labels. This effectively decomposes the k-class problem into k 2-class problems.

The procedure for constructing a Belief Decision Tree (BDT) is as follows.

In a traditional decision tree the attribute selection measure is a probabilistic

information gain function. However, for BDTs this method must now account for

the basic belief assignment for the described class label. The procedure for finding

the adapted gain ratio for an attribute is presented as follows:

www.manaraa.com

18

Notations and Assumptions

1. S: a given set of objects

2. Ij: an instance of the object

3. A = A1, A2, Ak: a set of k attributes

4. D(Aj): the domain of the attribute Ai E A

5. A(Ij): the value of the attribute A for the object Ij

6. SA
v = {Ij:A(Ij) = v}: the subset of objects which value for attribute A ∈ A

is v ∈ D(Ai)

7. Θ = C1, C2, ...Cn: the frame of discernment involving the possible classes

related to the classification problem.

8. C(Ij): the actual class of the object Ij

9. mΘ
g {Ij}[A](C): denotes the conditional basic belief assignment given to C u

Θ relative to object Ij given by an agent g that accepts the A is true.

Construction of a Belief Decision Tree

1. For each object Ij in S, we have a basic belief assignment (bba) mΘ{Ij} that

represents out belief about the value C(Ij). Suppose we select randomly and

with equal probability one object in S. What can be said about mΘ{S}, the

bba concerning the actual class of that object selected in S? mΘ{S} is the

average of the bbas taken over the objects in the subset S:

mΘ{S}(C) =

∑

Ij∈S mΘ{Ij}(C)

|S|
forC ⊆ Θ (11)

www.manaraa.com

19

2. Apply the pignistic transformation to mΘ{S} to get the average probability

BetPΘ{S} on each singular class of the randomly selected instance.

3. Perform the same computation for each subset SA
v , we get BetPΘ{SA

v } for

v ∈ D(A), A ∈ A

4. Compute Info(S) and InfoA(S) as done through traditional decision tree

algorithms, but using the pignistic probabilities. We get:

Info(S) = −
n

∑

i=1

BetPΘ{S}(Ci)log2BetPΘ§}(Ci) (12)

InfoA(S) =
∑

v∈D(A)

|SA
v |

|S|
Info(SA

v) (13)

= −
∑

v∈D(A)

|SA
v |

|S|

n
∑

i=1

BetPΘ{S
A
v }(Ci)log2BetPΘ{SA

v }(Ci) (14)

Once computed, we get the information gain provided by the attribute A in

the set of objects S such that:

Gain(S, A) = Info(S)InfoA(S) (15)

5. Using the Split Info, compute the gain ratio relative to each attribute A:

GainRatio(S, A) =
Gain(S, A)

SplitInfo(A)
(16)

In the attribute test node the attribute having the highest gain ratio will be selected

as the root of the following tree segment.

[21] It can be argued that missing attribute values are the prime case of total

ambiguity for that selected attribute. It is the mission of this thesis to move

forward to the next logical step, addressing cases of attribute ambiguity. In the

approach taken in this thesis, we are treating attribute vectors and class labels of

instance based classification for simplicity of experimentation.

www.manaraa.com

20

Previous research has largely neglected attribute ambiguity and to that end

was shown problems of scalability and issues of instance aggregation. In most tra-

ditional instance based classifier algorithms ambiguous data in the attribute vector

or class label are accounted for by sanitizing the data set to remove them from

training examples. Another approach is simply to treat the values as previously

unseen possible values, a new class label previously defined. In the sanitation

method, the obvious draw back is the fact that the training set loses instances.

This is particularly pronounced when there are few records to work from, as viable

instances are harder to create or assign the further away we move from modeling

a presented system.

Secondly, when another value is created or added from a previously unseen

state, the risk of weighting the training set toward one value can increase. In this

treatment we are focused on instance based learning systems and the issues of

scalability and instance selection. Presented for consideration is a simple solution

and evaluation of behaviors observed by a range of experiments run on a variety

of data sets. Presented is a treatment of ambiguous training and testing sets.

www.manaraa.com

CHAPTER 3

Formulation of Problem

3.1 Ambiguity in Attribute Vectors

We assume the learner’s input consists of a set of training examples in the

form (x, C(x)) where x is an example described by a discrete attribute vector

x = (x1, x2, x3, . . . , xn) and C(x) is a class label. In the particular task addressed

by this paper, the concrete attribute values are known only to a certain extent.

For instance, such an example can be described by the following vector:

Table 2. Ambiguous Attribute Vector

Example x
x1 YELLOW or PURPLE
x2 LARGE
x3 SQUARE

This is to indicate that the example’s color (x1) is known to be either ”YEL-

LOW” or ”PURPLE”, size (x2) is ”LARGE”, and shape (x3) is ”SQUARE”. Note

that while some attribute values are provided concretely, others are only known to

be constrained to a subset of values (e.g., we know the color is not ”BLUE”, but

we do not know if it is ”YELLOW” or ”PURPLE”).

A mechanism to quantify the amount of ambiguity in the data is necessary

in order to evaluate a potential domain. Suppose that, in a given example, an

attribute is given nA out of nT different values. For instance, as in the above

example, if the attribute can acquire values [BLUE, Y ELLOW, PURPLE] and is

known to be either Y ELLOW or PURPLE, for the given example, then nT = 3

and nA = 2. The amount of ambiguity is then quantified as follows:

21

www.manaraa.com

22

AAmb =
nA − 1

nT − 1
(17)

This ensures that AAmb = 0 if the value is known precisely (nA − 1 = 0) and

AAmb = 1 if the value is totally unknown. Note that each attribute must be able to

acquire at least two different values so that nT > 1. The total amount of attribute-

value ambiguity in the data can be assessed either by taking the average value of

AAmb over all example-attribute pairs or over only those example-attribute pairs

where the attribute value is ambiguous. In the following formula, m is the number

of example-attribute pairs considered.

AAmbtotal =
1

m

m
∑

j

nA(j) − 1

nT (j) − 1
× 100% (18)

We assume the same ambiguity can also be observed in the class labels. For

instance, out of classes C1 . . . C4, the teacher knows that the example is not from

C3 and not from C4, but does not know if it is C1 or C2.

An example of the real world domain for the Intrusion Detection System is

shown here as an instance of a domain with both attribute and classification label

ambiguity. In this example the ambiguity is represented by multi-labels separated

with a ”;”.

Table 3. Three training examples from the IDS Domain. Some attribute values
are ambiguous.

Case Protocol Event OS AttackType CLASS
1 UDP App. Alter WinXP; Exploit False Pos.;

Win2k3 Correct
2 ICMP App. Alter Unix DoS False Neg.

Linux
...

...
...

...
...

...
m TCP Web Win2k3 Recon. Correct

www.manaraa.com

23

The fact that class labels are ambiguous makes it necessary to redefine the

performance criterion accordingly. As mentioned before, let N be the number of

testing examples, let Ci,known be the set of class labels of the i-th testing example,

and let Ci,classif be the set of class labels given to the i-th testing example by

the classifier. We evaluate the classification performance of this classifier by the

following formula:

AmbA =
1

N

N
∑

i=1

Acci; where (19)

Acci =
|Ci,known

⋂

Ci,classif |

|Ci,known

⋃

Ci,classif |
(20)

We want to explore what modifications are needed if the k-Nearest Neighbor

classification (k-NN) is to be used in such ”ambiguous” domains. Two aspects

of classical k-NN classifiers need to be modified if the paradigm is to be applied

to ambiguously described data. First of those is the way similarity between two

examples is evaluated, the second relates to the voting mechanism. Let us address

each of them in turn.

3.2 Handling Ambiguity in k-Nearest Neighbor classifiers

Using instance based classification, there are two main issues we are concerned

with. First, how to calculate a similarity metric and second, how to determine the

appropriate class label when dealing with ambiguous data sets. It has been the

shortcoming of previous research not to address these two problems for ambiguous

examples. In the following section the issues of similarity are addressed by the

definition of a similarity function that acts to normalize for the attribute values.

The issue of class label voting and selection is addressed with the formulation of a

Class Label Weighting approach. For completeness, we compare the results against

a fuzzy approach to class label voting.

www.manaraa.com

24

3.2.1 Vector-to-Vector Similarity

In domains with examples described by attribute vectors, mutual similarity of

the two vectors is usually established by means of their geometric distance. The

shorter the distance, the greater the similarity.

The simplest case of ambiguity is when the value is totally unknown, values are

then replaced with a ”question mark”. If this is the case then a small modification

to the traditional distance metric will need to be made. Presented are three such

modifications.

Traditional Nearest Neighbor Approaches :

k-NNa: If xi = yi, then s(xi, yi) = 0; if xi 6= yi, then s(xi, yi) = 1; and if a

question mark is encountered in either xi or yi, then s(xi, yi) = 1. These values

are then summed over all M attributes:

S(x,y) =
M
∑

i=1

s(xi, yi); where (21)

s(xi, yi) =

1 yi 6= xi

0 yi = xi

1 yi = ? or xi = ?
(22)

k-NNb: If the ambiguities are rare, we can afford to ignore the unknown

attribute values altogether. For all the remaining attributes, xi = yi implies

s(xi, yi) = 0 and xi 6= yi implies s(xi, yi) = 1. Denoting by M1 the number

of unambiguous attributes, we use the following formula:

S(x,y) =
M1
∑

i=1

s(xi, yi); where (23)

s(xi, yi) =

{

1 yi 6= xi

0 yi = xi
(24)

www.manaraa.com

25

k-NNc: Yet another possibility is to replace each question mark with the

most frequent value of the given attribute. The similarity-calculating formula

then remains unchanged:

S(x,y) =
M
∑

i=1

s(xi, yi); where (25)

s(xi, yi) =

{

1 yi 6= xi

0 yi = xi
(26)

Reflecting partially known attribute values :

Let us now proceed to a more complicated case, where a given attribute value

is known only partially by which we mean the attribute is known to have one out

of a subset of the legal values for this attribute. Note that this is different from

total ignorance when the attribute value is replaced by a ”question mark”. Given

the following example of a domain representing whether a baseball game should be

played, the attributes map to the season (e.g Summer, Spring, Fall, Winter), air

quality (e.g. Dry, Humid), and part of the day (e.g. Morning, Noon, Afternoon,

and Night) with the class being either ”Play”, ”Delay”, or ”No-Play”:

Table 4. Table shows an example of a testing and training attribute vectors

Testing Example x
x1 SUMMER or SPRING
x2 HUMID
x3 DAY

Training Example y
y1 SPRING
y2 DRY
y3 DAY

CLASS LABEL Play

www.manaraa.com

26

In order to account for the x1 attribute effectively, the distance metric needs

to be modified in the following way:

Let x and y be attribute vectors for the testing and training set respectively.

S(x,y)kAmbigNN =
n

∑

i=1

s(xi, yi); where s(xi, yi) =
|xi

⋂

yi|

|xi

⋃

yi|
(27)

Calculations of similarity would follow as:

S(x,y)kAmbigNN =
|SPRING|

|SPRING, SUMMER|
+

| ⊘ |

|DRY, HUMID|
+

|DAY |

|DAY |
(28)

=
1

2
+

0

2
+

1

1
⇒ 1.5 (29)

Similarity calculations give a weight to the attributes being compared, thus defin-

ing a quantifiable difference between two attributes not based on ordinal properties.

This similarity value for each attribute is represented by the position on the con-

tinuum of unrelated to identical values. The values for the similarity of a single

attribute fall in the set of real numbers for [0. . . 1]. Total instance similarity is the

summation across all attributes in the instance. By using this function, the data

set is normalized and discrete differences in nominal data can be found in a robust

way. This method of using the similarity function, outlined in Equation 27 for

nearest neighbor classification, we call the k Ambiguous Nearest Neighbor Classi-

fier (k-AmbigNN) approach.

Reflecting partially known attributes with continuous values :

The algorithm presented here can be extended to account for continuous valued

attribute labels and ranges. Two changes need to be made in order to accommodate

this: one to the similarity function and one to the way ambiguity is defined for

the attribute. When working with discrete values, ambiguity is quite clear. As

demonstrated, ambiguity is simply the multiplicity of discrete attribute values.

Defining ambiguity on a continuous domain takes a bit more effort. The following

www.manaraa.com

27

graphs show the different types of ambiguities that can arise. As can be seen,

ambiguity is represented as a range or a set of ranges. A single continuous value

can be accounted for in the normal way.

Figure 4. Two Data Points

y

xi xj

Figure 5. One Data Point One Data Range

yi yj

xi xj
yi yj

xi xj

Figure 6. Two Data Ranges

www.manaraa.com

28

Moving on to the second issue of the similarity function, we find that when

accounting for continuous values the most efficient mechanism is to use a variation

on the Euclidean distance measure. In Equation 27 we make a change as follows:

S(x,y)kAmbigNN,continuous =
n

∑

i=1

s(xi, yi); where s(xi, yi) = |xi − yi| (30)

3.2.2 Voting Mechanism

In the example from Table 5, the 3-NN classifier has already identified the

three nearest neighbors, some of which have more than one class label (because

the true class is known only partially). Labeling the testing example with a union

of these labels would not reflect the different degree of “focus” present in the

individual neighbors. Thus the fact that the first neighbor suggests classes [C1, C2]

and the third neighbor suggests only C2 seems to indicate there should be more

confidence in the latter example. Illustrated here are two approaches used for

class label voting that accounts for ambiguity in the class label through weighting

methods.

Table 5. Ambiguous class labels from a k-NN classifier

Class Labels
Nearest Neighbor 1 C1 or C2

Nearest Neighbor 2 C1 or C3 or C4

Nearest Neighbor 3 C2

The first approach assigns a weight to each class label by letting Ni,c = 1 if

class c is found among the labels of the i-th nearest neighbor and let Ni,c = 0 if it

is not. If Ni,total is the number of labels in the i-th nearest neighbor, then, for k

nearest neighbors, we calculate the weight of class c as follows:

Wfactor(c) =
1

k

k
∑

i=1

Ni,c

Ni,total

(31)

www.manaraa.com

29

Voting is done by selecting the class label with the highest Wfactor. Example

Wfactor values for this voting mechanism using the data provided in Table 5 are

presented in Table 6. For the case of the three nearest neighbors from Table 5,

the class weights are calculated in Table 6. We define a threshold, θ, to aid in the

selection process. The algorithm will choose classes whose weights exceed a user’s

threshold, θ. For example, if θ = 0.4, class C2 is chosen; if θ = 0.2, classes [C1, C2]

are chosen.

Table 6. Voting for the class label based on the nearest neighbors listed

Wfactor(C)

C1 = 1
3

(

1
2

+ 1
3

+ 0
1

)

⇒ 0.278

C2 = 1
3

(

1
2

+ 0
3

+ 1
1

)

⇒ 0.500

C3 = 1
3

(

0
2

+ 1
3

+ 0
1

)

⇒ 0.111

C4 = 1
3

(

0
2

+ 1
3

+ 0
1

)

⇒ 0.111

The second approach is based on a fuzzy voting scheme and was implemented

for sake of comparison with earlier work done in uncertainty processing. The main

idea is to consider the degree of membership a training case has in a classification

label. This process is defined in the following manner:

• nc . . . number of classes,

• k . . . number of nearest neighbors,

• 1 ≤ j ≤ k . . . j-th neighbor,

• µi(yj) . . .membership of the neighbor, yj , in the i-th class,

• µi(x) . . .membership of the training example, x, in the i-th class,

• ‖x − yj‖ . . . the distance between x and yj

www.manaraa.com

30

• 1.0 ≤ w ≤ 2.0 . . . a fuzzy parameter

The following formula, based on ideas developed by [11], represents the nor-

malized membership for each of the class labels.

µi(x) =

∑k
j=1 µi(yj) · (‖x − yj‖

−
2

w−1)
∑k

k=1 (‖x − yj‖
−

2

w−1)
, i = 1, 2, . . . , nc (32)

Note that, we are using distance ‖x − yj‖ instead of similarity. Furthermore,

note that the formula involves two parameters: w and θfuzzy, the latter being a

threshold that controls the class selection.

www.manaraa.com

CHAPTER 4

Experimental Procedure

The experiments that were run show the functionality of the algorithm pre-

sented. Ambiguous data sets were compiled and the algorithm tested against them

in an effort to prove that our instance based classifier outperforms normal instance

based classifiers on ambiguous domains. In order to run the experiments ambiguous

data sets had to be defined. In the Description of Data Set section the breakdown

of the data sets is discussed. The procedure for generating the ambiguous data

is described in the preceding sections as well. The previously described algorithm

will be referred to a k-Ambiguous Instance Based Classification (k-AmbigNN).

4.1 Description of Data Sets/Files

The data that is provided to the algorithm comes in two types. Meta-data

that describes the training and testing set and the actual data set itself. The

meta-data defines the name of the attributes and class labels as well as the type of

data. It is important to know the data type for the attribute because the algorithm

changes depending on the attribute or class label type.

The application takes three files as input for purposes of classification.

filestem.names

The names file contains meta-data describing the attributes and class labels

of the instances in the data file. The names file follows the following format:

Class Label:Possible class labels

(class label types are defined the same way as attribute labels)

Attribute Name1:Attribute Type

Attribute Name2:Attribute Type

.

Attribute Namen:Attribute Type

31

www.manaraa.com

32

Acceptable attribute types are:

1. Numerical : Numerical data types are numbers that are defined by the set of

Real numbers. Numerical data can have an order of magnitude and precision

within limits of the system processing them.

2. String : A string data type can be used to define data that is not numerical

in nature. ”Good, Bad, Fair” are examples of string data.

3. Range : A range type normally represents a range of data that are discrete

and ordinal such as the set of all integers or real numbers. An example of a

range data type is 1-10 or a-b where the character ”-” is a special character

denoting the range.

Names file format example:

PlayGame:true,false

Current_Weather:good,bad,fair

Humidity:numeric

Forecast:good,bad,fair

Duepoint:range

filestem.data and filestem.test

These two file types are defined in the same way. They are comma separated data

files where each line is a new record or instance. The system reads each line and

breaks them along the comma line to match up with the attribute types defined

by the names file.

Data file format example:

good,28,fair,25-45,true

fair,45,fair,55-57,true

good,88,bad,25-45,true

fair,45,fair,62-87,false

...

www.manaraa.com

33

The Test file format differs by not having the last column defining the class label

for the input vector.

good,28,fair,25-45

fair,45,fair,55-57

good,88,bad,25-45

fair,45,fair,62-87

...

In the event that the instance vector is ambiguously defined, the multiple

attribute labels or classification labels would be defined with a ”;” as the separator

for the label.

good;fair,28,fair,25-45

fair,45,fair,55-57;25-56

good,88,bad,25-45

fair,45,fair;good;bad,62-87

fair,,good,

...

Unknown labels are defined in one of two ways either by a hole in the data set de-

fined by ”,?,” or the set of every value for the described attribute: ”good;bad;fair”.

4.2 Generation of Test Data

As previously mentioned, the ambiguously defined attribute label problem is

supported by the real world domain dealing with Computer Network Intrusion

Detection Systems and the evaluation of such systems. There are a total of three

types of data domains employed in the following sets of experiments. The first data

domain is the IDS domain. All three domains contain completely discrete data.

The algorithm does provide for continuous data, as mentioned before, discrete

domains were chosen for calculation simplicity and because the main IDS domains

of interest are discrete. The second type of domains used are generated from

the UCI Repository. In this category there are two sub categories:1. raw UCI

domain (University) contributed by Lebowitz and 2. other UCI domains that

www.manaraa.com

34

were artificially made ambiguous. These UCI domains can contain missing values.

The third general type of domain are completely synthetic and were generated for

benchmark testing the boundaries of the algorithm and were also artificially made

ambiguous. The attribute and label ambiguity went beyond simply increasing

the number of missing values or by randomly adding attribute values to create

attribute value sets. In an effort to maintain accuracy to real world situations, we

introduced ambiguity to the attribute values by adding related values to make an

attribute set. We found the most likely attribute values to fit each vectors situation

with the use of a decision tree algorithm.

4.2.1 Network Intrusion Detection System Data

The data file was compiled from observations made on a concrete computer

network as a result of a number of measurements. The collected data included

the protocol of the incoming network request, the event that took place due to the

request, analyzed attack type, type of operating system targeted in the attack, sys-

tem used for intrusion detection, and possible classification labels: False Positive,

False Negative, and Correctly classified.

Table 7. Illustration of IDS Data Definition

Protocol Event AttackType OS System Class
UDP Web Recon. Linux NIDS False Pos.
TCP App. Alter Exploit Unix SIV False Neg.
ICMP Launch DoS WinXP LM Correct

App.
Install Win 98/Me
Term. Win2k
Key Proc.

Auto Win2k3
Launch

Table 7 summarizes attributes that acquire ambiguous values. The ambiguity

www.manaraa.com

35

is due to the network administrator’s limited ability to interpret the corresponding

log files. Other attributes were unambiguous—in reality, there were 10 attributes

and 126 examples. The amount of ambiguity according to Equation 18 is 30%.

4.2.2 Synthetic Data Set

The labels of the attributes are discrete. We choose this type of data set

because it is very easy to create and minimizes the complexity of the calculations

for both our approach and the traditional approaches compared against. We will

work with the following synthetic domains.

Boolean Expression for Classification: These domains are constructed by

first creating a large data set of binary attributes. In order to make a suitably

large domain, we started with 10 binary attributes producing 1024 cases to use.

Examples that satisfy the following equations are considered positive, while those

that do not are negative. In the following we denote the logical operator ”AND”

with the ∧, the logical operator ”OR” with the ∨, and the logical operator ”NEG-

ATIVE” with the ¬.

Bool(x) = (x1 ∨ x6) ∧ (x4 ∨ x10) ∧ (¬x2 ∨ x7) (33)

Bool(x) = (x10 ∧ x1) ∨ (x4 ∧ x6 ∧ x8) (34)

Attribute ambiguity is randomly introduced across the entire domain by randomly

selecting (with replacement) attribute values and appending them with the most

common value(s) for the domain. The amount of ambiguity is controlled by the

Amount of Ambiguity (AAmb) for the data set as defined by Equation 17. Sub-

domains with AAmb values ranging from 10% to 50% are created for purposes of

experimentation.

www.manaraa.com

36

Decision Tree for Classification: The second domain was created from a deci-

sion tree. The decision tree presented in Figure 10 is used to create the domain. 10

multi-valued attributes are used for this domain. The decision tree is then pruned

to remove a node. The pruned tree, presented in Figure 8, is used to re-classifying

the data. Attribute ambiguity is introduced into this domain by randomly select-

ing an attribute, with replacement, and adding the most frequently occurring value

to it. The amount of ambiguity in a domain is defined by the formulation of the

AAmb term from Equation 17. Sub-domains with AAmb values ranging from 10%

to 50% for both ambiguous and crisp class labels are created with for purpose of

experimentation. We created two of these domains for experimentation shown in

Figure 8 and Figure 10.

AT1

AT2

AT4

AT3

+

+ -

+ -

x y,z

bamo,n

s t,r

Figure 7. This decision tree was used to classify a synthetic domain.

www.manaraa.com

37

AT1

AT2

+ -

x y,z

mo,n

+

- +

Figure 8. Instead of pruning, the leaf nodes were combined to generate an ambigu-
ous class label. This synthetic tree was then used to re-classify its corresponding
domain.

AT1

AT2

AT6

AT3

c2

c4 c3

c1 c3

x

y

bao,mn

c d

AT4

AT5c1

c2 c4

t,rs

p q

c1

e

z

Figure 9. This decision tree was used to classify a more complex synthetic domain.

www.manaraa.com

38

AT1

AT2 AT3

c2 c4, c3, c1 c1 c3

x

y

bao,mn

z

c4, c2, c1

Figure 10. Instead of pruning, the leaf nodes were combined to generate an ambigu-
ous class label. This synthetic tree was then used to re-classify its corresponding
domain.

Adapted UCI Repository

Using the Balloon and Voting-Records data set from the UCI Machine Learn-

ing Repository, we are creating a third type of data set by introduced ambiguity.

The ambiguity is introduced in two ways: first, class label ambiguity and second,

attribute ambiguity. Class label ambiguity is achieved by determining decision

trees that best fit the Balloon and the Voting data sets. A pruning process in-

volving the change of a single path down the tree yielding multiple class labels is

invoked. When the data set is exposed to the new decision tree for re-classification

the potential of different or multiple class labels is high. This procedure can be

executed repeatedly with differently pruned tree to build larger ambiguity into the

class labels.

In order to introduce ambiguity into attribute values, an attribute was selected

at random with replacement. For that attribute the most common value was

deduced from the entire set and added to the existing value. Random selection

with replacement was used so that a larger amount of ambiguity per attribute

could be achieved. The overall ambiguity metric for the sample is controlled by

www.manaraa.com

39

the AAmb defined in Equation 17. Sub-domains with AAmb values ranging from

10% to 50% are created for experimentation.

4.2.3 Experimental Procedure

Whenever statistical significance tests are needed we used the 5x2 cross-

validation with two-tailed t-test as recommended by Dietterich [4].

Performance Evaluation As mentioned above performance was evaluated by

a metric named AmbA. Experiments using the Precision and Recall calculations

were also performed using the Micro-, Macro-, and F1 approaches. In order to

understand these calculations it is important first to understand what they are

telling us. In general Precision is the measure of specificity. Another way to say

this is Precision is the measure of relevance a result has to a domain. While in

contrast Recall is simply the measure of sensitivity a result has to the overall

domain. Finally the F1 score is the measure of accuracy. F1 can be viewed as a

weighted average of the Precision and Recall calculations.

The Micro- and Macro- calculations give us two perspectives of the accuracy

measures. Micro- is simply defined as calculating the statistical value for each class

label as it is produced and then taking the average, while Macro- implies that the

average is taken across the statistics generated for all decision.

Presented is a quick description of these calculations:

Let us define TP as ”true positive”, FP as ”false positive”, TN as ”true negatives”,

and FN as ”false negatives”

Precision : Pr =
TP

TP + FP
(35)

Recall : Re =
TP

TP + FN
(36)

www.manaraa.com

40

F1 =
2xPrxRe

Pr + Re
(37)

Table 8. Micro and Macro Definitions

Precision Recall F1

Macro PrM =
∑k

i
Pri

k
ReM =

∑k

i
Rei

k
F M

1 = 2xPrMxReM

PrM+ReM

Micro Prµ =
∑k

i=1
TPi

∑k

i=1
TPi+FPi

Reµ =
∑k

i=1
TPi

∑k

i=1
TPi+FNi

F
µ
1 = 2xPrµxReµ

Prµ+Reµ

5x2 Cross-Validation Method The main tenant of the 5x2cv method is to

perform a 2-fold cross validation 5 times. For each replication the domain is split

randomly into equal sized pieces. The two learning algorithms are trained on both

sets producing four error estimates or accuracy calculations. Using this data a two-

tailed t-test was performed to determine significant performance differences in the

two algorithms. For our algorithms our k-AmbigNN algorithm was systematically

tested against each of the traditional approaches producing the data plots in the

following results section.

Two major experiments were conducted as outlined: 1. evaluation on class

label weighting factors for determining classification from ambiguously defined

class labels, and 2. systematic evaluation of k-AmbigNN algorithm on synthetic

and real world domains.

For the synthetic domains the k nearest neighbors are computed from the

k-AmbigNN algorithm where k = 1 and k = 5. The selected k nearest neighbors

are then subjected to the voting mechanisms (Wfactor and k-fuzzyNN approach)

for classification. These two tests are run on each synthetic sub-domain with

increasing AAmb values producing data to be used in Accuracy plots (defined by

Equation 19 vs. AAmb plot).

www.manaraa.com

41

For the two adapted UCI domains the k nearest neighbors are computed for the

k-AmbigNN and the k-NNa approach for values of k = 1 and k = 5. The selected

k nearest neighbors are subjected to both voting mechanisms for classification.

These two tests are run on each adapted sub-domain in order to produce accuracy

data to be plotted against the AAmb value. k-NNa is the only traditional approach

selected because these domains do not contain missing values.

4.2.4 Results

First, we wanted to learn how the performance is affected by the cut-off point,

θ, used in the voting mechanism—recall that the testing example is assigned all

class labels for which Wfactor(c) > θ. High values of θ lead to the “crisp” single-

label case, or even to the situation where no class label exceeds θ. Conversely,

we determined that very low values will render the labeling more ambiguous than

necessary. The correct selection of θ seems to depend on the amount of class label

ambiguity present. We measured the classification performance by the AmbA

metric defined by Equation 19. For the synthetic data, Table 9 shows the values

of AAmb for different values of θ. The results indicate that the optimum cut-off is

somewhere between 0.3 and 0.5, and that its optimum value depends also on the

number, k, of the nearest neighbors employed.

Table 9. AmbA-performance for different cut-off points and k-values as evaluated
on synthetic domain with AAmb = 30%.

cut-off 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
k = 1 0.385 0.385 0.385 0.385 0.385 0 0 0
k = 3 0.285 0.285 0.366 0.366 0.366 0.112 0.112 0
k = 5 0.149 0.459 0.459 0.416 0.416 0.248 0.019 0.019
k = 9 0.037 0.267 0.466 0.503 0.398 0.286 0.019 0.019

For the balance of experiments a value of 0.3 was chosen for theta. This value

www.manaraa.com

42

seemed to perform the best across the broad stroke.

Figure 11 compares the performance of k-AmbigNN with that of k-NN and

k-fuzzyNN in the intrusion detection domain for different values of k. To be able

to use k-NN, we replaced ambiguous values with question marks. The individual

points in the charts have been obtained as averages from the 5x2 cross-validation,

a methodology recommended for the assessment of machine learning algorithms

by Dietterich [4]. It is apparent that the k-AmbigNN consistently out-performs

the other approaches over a whole range of k-values. Since k-NN systematically

under-performs k-AmbigNN, we conclude that replacing partial ambiguity with

total ambiguity is indeed unnecessary and harmful to the outcome. Interestingly,

whereas k-NN’s performance dropped with the growing value of k due to the

separation in the data points, k-AmbigNN’s performance grew with the increasing

k. The margin between k-NN and k-AmbigNN is statistically significant according

to the two-tailed t-test with a confidence level of 2%. The outcome of the fuzzy

approach is a different story. The fuzzy approach does not seem to be appropriate

here. It is surmised that our ambiguities are too simple for the fuzzy-set approach

to fully unfold its strength.

www.manaraa.com

43

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

b
ig

u
o
u
s
 A

c
c
u
ra

c
y
 (

A
m

b
A

)

Number of selected neighbors (k)

Network Intrusion Detection System Domain

k−AmbNN
k−NN
k−NNfuzzy

Figure 11. Comparing the performance of k-AmbigNN with that of k-NN on the
IDS domain.

www.manaraa.com

44

The figures following Figure 11 show the IDS domain evaluated using the k-

AmbigNN and k-NN approached and Macro- and Micro Precision, Recall, and F1 as

the accuracy measures. Figure 14 and Figure 17 indicate the trend noticed before

that the k-AmbigNN algorithm increases its performance as the k values grow.

This assertion is supported experimentally in Figures 24, Figures 21, Figures 32,

and Figures 29.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

 P
re

c
e
s
io

n

Number of selected neighbors (k)

Network Intrusion Detection Domain

k−AmbigNN
k−NN

Figure 12. Macro Precision vs. number of neighbors for k-AmbigNN and k-NN.

www.manaraa.com

45

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

 R
e
c
a
ll

Number of selected neighbors (k)

Network Intrusion Detection Domain

k−AmbigNN
k−NN

Figure 13. Macro Recall vs. number of neighbors for k-AmbigNN and k-NN.

Experimental results show in Figure 14 shows the Macro F1 plotted versus

the number of neighbors fro both the k-AmbigNN and the k-NN. This plot shows

a trend toward greater accuracy as the number of neighbors are increased.

www.manaraa.com

46

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

F
1

Number of selected neighbors (k)

Network Intrusion Detection Domain

k−AmbigNN
k−NN

Figure 14. Macro F1 vs. number of neighbors for k-AmbigNN and k-NN.

Figures 15 - 17 support the above findings with the micro precision, recall,

and F1 calculations. The findings on the IDS domain suggests that accounting for

ambiguity in the manner presented here, the k-AmbigNN approach, has an edge

over the traditional approaches.

Figure 18 corroborates all these observations by experiments with the university

domain. In this sparser, but less noisy domain, even k-AmbigNN’s performance

tended to drop with growing k, although even here we seem to have a reason (at

least for small k) to claim that k-AmbigNN is more robust regarding the increasing

values of k. We cautiously suggest that the experiments with the first two domains

indicate that k-AmbigNN offers not only higher performance, but also higher ro-

bustness with respect to k. The fuzzy voting mechanism seems to fail with this

domain as well.

www.manaraa.com

47

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 P

re
c
e
s
io

n

Number of selected neighbors (k)

Network Intrusion Detection Domain

k−AmbigNN
k−NN

Figure 15. Micro Precision vs. number of neighbors for k-AmbigNN and k-NN.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 R

e
c
a
ll

Number of selected neighbors (k)

Network Intrusion Detection Domain

k−AmbigNN
k−NN

Figure 16. Micro Recall vs. number of neighbors for k-AmbigNN and k-NN.

www.manaraa.com

48

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 F

1

Number of selected neighbors (k)

Network Intrusion Detection Domain

k−AmbigNN
k−NN

Figure 17. Micro F1 vs. number of neighbors for k-AmbigNN and k-NN.

www.manaraa.com

49

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

b
ig

u
o
u
s
 A

c
c
u
ra

c
y
 (

A
m

b
A

)

Number of selected neighbors (k)

University Domain

k−AmbNN
k−NN
k−fuzzyNN

Figure 18. Comparing the performance of k-AmbigNN with that of k-NN on the
university Domain.

Figures 19 - 21 show the results of the Macro tests performed on the UCI

Universities domain. This domain is highly ambiguous across multiple variables.

A clear trend is visible in the macro approaches. Precision seems to perform better.

Figure 20 shows the Macro Recall for the UCI Universities domain where the first

data points seem out of place. We believe this is a fluke of the data set being

investigated. The important take away is the smooth trending of the k-AmbigNN

approach seems to resist the changes in k better.

www.manaraa.com

50

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

 P
re

c
e
s
io

n

Number of selected neighbors (k)

UCI Universities Domain

k−AmbigNN
k−NN

Figure 19. Macro Precision vs. number of neighbors for k-AmbigNN and k-NN.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

 R
e
c
a
ll

Number of selected neighbors (k)

UCI Universities Domain

k−AmbigNN
k−NN

Figure 20. Macro Recall vs. number of neighbors for k-AmbigNN and k-NN.

www.manaraa.com

51

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

F
1

Number of selected neighbors (k)

UCI Universities Domain

k−AmbigNN
k−NN

Figure 21. Macro F1 vs. number of neighbors for k-AmbigNN and k-NN.

www.manaraa.com

52

As was discussed earlier the same patterns follow in Figure 22 - Figure 24 for

the micro experiments as they pertain to the UCI Universities domain. There is

an expected minor trend down as the number of k grows. Again the resistance to

k change is the main take away.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 P

re
c
e
s
io

n

Number of selected neighbors (k)

UCI Universities Domain

k−AmbigNN
k−NN

Figure 22. Micro Precision vs. number of neighbors for k-AmbigNN and k-NN.

www.manaraa.com

53

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 R

e
c
a
ll

Number of selected neighbors (k)

UCI Universities Domain

k−AmbigNN
k−NN

Figure 23. Micro Recall vs. number of neighbors for k-AmbigNN and k-NN.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 F

1

Number of selected neighbors (k)

UCI Universities Domain

k−AmbigNN
k−NN

Figure 24. Micro F1 vs. number of neighbors for k-AmbigNN and k-NN.

www.manaraa.com

54

After the initial runs on ”clean” domains with only inherent ambiguity, a

modification was made. In the next group of experiments Figure 33 - Figure 42, an

optimum value of k was chosen and programmatically ambiguity was introduced

to the domains. This is achieved by an ”induction” algorithm that estimates

the classification accuracy (applying the 5-fold cross-validation approach to the

training set) for different values of k and then selects the one that promises the

highest performance. The same approach could in principle have been employed

also for the choice of the θ-threshold used in the voting scheme but we used the

fixed θ = 0.3 not to complicate the matter.

Figure 25 and Figure 26 show the classification performance depended on

the amount of ambiguities in the data for both decision tree generated domains.

While k-fuzzyNN and k-NN appear relatively unperturbed by this parameter, k-

AmbigNN’s performance drops conspicuously with growing values of AAmb. The

observation leads us to assume that k-AmbigNN is more appropriate where the

domain ambiguity is limited.

www.manaraa.com

55

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

b
ig

u
o
u
s
 A

c
c
u
ra

c
y
 (

A
m

b
A

)

Amount of Ambiguity introduced into the data set (AAmb)

Synthetic Decision Tree Domain

k−AmbigNN
k−fuzzyNN

Figure 25. Comparison of the performance of k-AmbigNN, k-NN, k-fuzzyNN on
the decision-tree-generated synthetic domains, as measured for different degrees of
ambiguity.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

b
ig

u
o
u
s
 A

c
c
u
ra

c
y
 (

A
m

b
A

)

Amount of Ambiguity introduced into the data set (AAmb)

Synthetic Decision Tree Domain

k−AmbNN
k−NN
k−NNfuzzy

Figure 26. Comparison of the performance of k-AmbigNN, k-NN, k-fuzzyNN on
the second decision-tree-generated synthetic domains, as measured for different
degrees of ambiguity.

www.manaraa.com

56

Macro and Micro Precision, Recall, and F1 were performed on the decision tree

domain. We chose to experiment with the second decision tree domain because we

felt it represented more realistic domains. The results can be found in Figures 27 -

32. As can be seen in the figures the k-AmbigNN approach generally performs as

well as the traditional approach on the un-ambiguated domain. The general trend

that the k-AmbigNN approach performs better with a higher number neighbors

participating in the voting is supported. k-fuzzyNN was left off these figures due

to the fact of very low results.

In Figures 27 - 29 the rather flat trend indicated that the number of neighbors

mat not be the major contributor for the performance of the k-AmbigNN approach.

In these experiments we kept the amount of ambiguity constant and varied the

number of neighbors.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

 P
re

c
e
s
io

n

Number of selected neighbors (k)

Synthetic Decision Tree Domain

k−AmbigNN
k−NN

Figure 27. Macro Precision vs. number of neighbors for k-AmbigNN and k-NN
calculated on the second decision tree domain.

www.manaraa.com

57

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

 R
e
c
a
ll

Number of selected neighbors (k)

Synthetic Decision Tree Domain

k−AmbigNN
k−NN

Figure 28. Macro Recall vs. number of neighbors for k-AmbigNN and k-NN
calculated on the second decision tree domain.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a
c
ro

F
1

Number of selected neighbors (k)

Synthetic Decision Tree Domain

k−AmbigNN
k−NN

Figure 29. Macro F1 vs. number of neighbors for k-AmbigNN and k-NN calculated
on the second decision tree domain.

www.manaraa.com

58

Figures 30 - 32 supports the claim we made about earlier macro experiments

on the same synthetic decision tree domain.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 P

re
c
e
s
io

n

Number of selected neighbors (k)

Synthetic Decision Tree Domain

k−AmbigNN
k−NN

Figure 30. Micro Precision vs. number of neighbors for k-AmbigNN and k-NN
calculated on the second decision tree domain.

www.manaraa.com

59

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 R

e
c
a
ll

Number of selected neighbors (k)

Synthetic Decision Tree Domain

k−AmbigNN
k−NN

Figure 31. Micro Recall vs. number of neighbors for k-AmbigNN and k-NN cal-
culated on the second decision tree domain.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ic

ro
 F

1

Number of selected neighbors (k)

Synthetic Decision Tree Domain

k−AmbigNN
k−NN

Figure 32. Micro F1 vs. number of neighbors for k-AmbigNN and k-NN calculated
on the second decision tree domain.

www.manaraa.com

60

The next set of graphs show the two Boolean domains and indicate that

the k-AmbigNN approach does outperform the more traditional approach. It is

important to note that in these synthetic Boolean domains the attribute values and

class labels are binary. An interesting pattern starts to emerge from the results

indicating a convergence point for the algorithms. As the amount of ambiguity

increases all the algorithms converge to a similar performance value. It is surmised

that this converging pattern is due to the fact that so much ambiguity exists in

the domain that it is just as likely to be all as none, effectively making ”question

marks” out of each domain.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Percentage of Ambiguity introduced into the data set

k=1 Synthetic Boolean Domain

k−AmbigNN
k−NNa
k−NNb,c

Figure 33. Performance of k-AmbigNN approaches on synthetically introduced
ambiguity on synthetic Boolean domain.

www.manaraa.com

61

0 5 10 15 20 25 30 35 40 45 50 55
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c
c
u
ra

c
y

Percentage of Ambiguity introduced into the data set

k=3 Synthetic Boolean Domain

k−AmbigNN
k−NNa
k−NNb,c

Figure 34. Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on synthetic Boolean domain.

0 5 10 15 20 25 30 35 40 45 50 55
0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y

Percentage of Ambiguity introduced into the data set

k=5 Synthetic Boolean Domain

k−AmbigNN
k−NNa
k−NNb,c

Figure 35. Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on synthetic Boolean domain.

www.manaraa.com

62

0 5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

A
m

b
A

)

Percentage of Ambiguity introduced into the data set

k=10 Synthetic Boolean Domain

k−AmbigNN
k−NNa
k−NNb,c

Figure 36. Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on synthetic Boolean domain.

www.manaraa.com

63

Shown in Figures 37 - 40 the k-AmgibNN approach performed as well, and in

a few cases better, than the traditional approaches. These is a clear convergence

of the approaches at 25% ambiguity. This trend can be explained by the fact that

as ambiguity increases above a threshold the probability of randomly choosing the

right label is balanced by the fact that no matter how many attributes are present

in the class label there is always a contribution to the resulting label. More work

may be need in order to more accurately model the amount of ambiguity in the

accuracy measures.

0 5 10 15 20 25 30 35 40 45 50 55
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c
c
u
ra

c
y
 (

A
m

b
A

)

Percentage of Ambiguity introduced into the data set

k=1 Synthetic Boolean Domain 2

k−AmbigNN
k−NNa
k−NNb,c

Figure 37. Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain.

www.manaraa.com

64

0 5 10 15 20 25 30 35 40 45 50 55
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
c
c
u
ra

c
y
 (

A
m

b
A

)

Percentage of Ambiguity introduced into the data set

k=3 Synthetic Boolean Domain 2

k−AmbigNN
k−NNa
k−NNb,c

Figure 38. Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain.

0 5 10 15 20 25 30 35 40 45 50 55
0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

A
m

b
A

)

Percentage of Ambiguity introduced into the data set

k=5 Synthetic Boolean Domain 2

k−AmbigNN
k−NNa
k−NNb,c

Figure 39. Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain.

www.manaraa.com

65

0 5 10 15 20 25 30 35 40 45 50 55
0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y
 (

A
m

b
A

)

Percentage of Ambiguity introduced into the data set

k=10 Synthetic Boolean Domain 2

k−AmbigNN
k−NNa
k−NNb,c

Figure 40. Performance of k-AmbigNN and k-NN approaches on synthetically
introduced ambiguity on second synthetic Boolean domain.

www.manaraa.com

66

Continued experimentation supporting this claim can be reviewed in Figure 41

and Figure 42. The domains presented are both UCI domains that have been modi-

fied in the same manner as the pure synthetic domains, to introduce ambiguity. For

this UCI domain the results are a bit sharp due to the low number of data points

in the domain. This experiment really shows the spread between the approaches.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Degree of Ambiguity introduced into the data set

k=5

k−ANN
k−NNa
k−NNb
k−NNc

UCI Balloon

Figure 41. Performance of k-AmbigNN and k-NN on UCI domains with synthetic
ambiguity.

www.manaraa.com

67

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Degree of Ambiguity introduced into the data set

k=5

k−ANN
k−NNa
k−NNb
k−NNc

UCI Voting−Record

Figure 42. Performance of k-AmbigNN and k-NN on UCI domains with synthetic
ambiguity.

www.manaraa.com

68

The final phase of the experimentation is shown in Figures 43-Figure 49. This

final series of domains are straight UCI Repository domains. These older domains

show the performance of the k-AmbigNN on data with missing values and how

it compares to the traditional approaches. In many cases k-AmbigNN performs

as well if not better than the traditional approach. The notable exceptions are

Figure 46 the mushroom domain, and Figure 43. It is surmised that the nature

of these domains point to the poor performance. In the case of the tic-tac-toe

domain there are very few instances and ambiguity and missing values are very

impactful. While in the case of mushroom domain the domain is quite large and

thus impacts performance. With little or no ambiguity the similarity approach

given for k-AmbigNN performs as well as traditional approaches.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Number of Nearest Neighbors user

UCI Tic−Tac−Toe Domain

k−ANN
k−NNa
k−NNb
k−NNc

Figure 43. Performance of k-AmbigNN and k-NN approaches on Tic-Tac-Toe UCI
domain.

www.manaraa.com

69

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Number of Nearest Neighbors user

UCI Audiolgy Domain

k−ANN
k−NNa
k−NNb
k−NNc

Figure 44. Performance of k-AmbigNN and k-NN approaches on Audiology UCI
domain.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Number of Nearest Neighbors user

UCI Hepatitis Domain

k−ANN
k−NNa
k−NNb
k−NNc

Figure 45. Performance of k-AmbigNN and k-NN approaches on Hepatitis UCI
domain.

www.manaraa.com

70

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Number of Nearest Neighbors user

UCI Mushrooms Domain

k−ANN
k−NNa
k−NNb
k−NNc

Figure 46. Performance of k-AmbigNN and k-NN approaches on Mushroom UCI
domain.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Number of Nearest Neighbors user

UCI Post Operative Domain

k−ANN
k−NNa
k−NNb
k−NNc

Figure 47. Performance of k-AmbigNN and k-NN approaches on Post Operative
UCI domain.

www.manaraa.com

71

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Number of Nearest Neighbors user

UCI Shuttle Domain

k−ANN
k−NNa
k−NNb
k−NNc

Figure 48. Performance of k-AmbigNN and k-NN approaches on Shuttle UCI
domain.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Number of Nearest Neighbors user

UCI Voting Records Domain

k−ANN
k−NNa
k−NNb
k−NNc

Figure 49. Performance of k-AmbigNN and k-NN approaches on Voting UCI do-
main.

www.manaraa.com

72

In general the k-AmbigNN approach out performed the traditional approaches

on ambiguous and non-ambiguous domains. On domains with moderate amounts

of ambiguity the k-AmbigNN approach shines. The Micro, Macro experiments

show that there is a clear improvement using the non-traditional approaches even

though the results seem a bit flat. More experimentation is needed into an im-

proved accuracy measure that accounts for partial class label correctness better

than the approach presented in this thesis.

www.manaraa.com

CHAPTER 5

Conclusion

In an attempt to pioneer research in the field of learning from ambiguously

described examples, this paper has presented a simple solution on how to handle

ambiguity in instance based classifiers. Three issues have been addressed: how

to evaluate an example-to-example similarity function, how to choose the winning

class label, and how to evaluate the classification accuracy. Because of the lack

of available benchmark domains with ambiguous data, we had to experiment with

artificially created data sets into which we introduced attribute vector ambigu-

ity. In our experiments we observed some unexpected anomalies caused by the

idiosyncrasies of the way we evaluated performance. Obviously, these issues call

for more systematic research and can be expanding into other areas and other

algorithms. To attract the attention of the scientific community to this unfairly

neglected problem is the main motivation for this thesis.

In order to address the possible criticism that we had few real world domains

that represent a significant amount of missing values, we believe that some of

the UCI Repository data files have been sanitized in an effort to make the data

easier for a wider variety of algorithms to use. This sanitation causes a lack in

real world data that would include attribute vector ambiguity. It seems that for

highly disparate data sets our application outperforms the traditional approaches.

Our approach excels on un-sanitized data sets. It is our belief that more data

domains would fall into the un-sanitized category if there were algorithms that

could account for such data sets. More real world, un-sanitized, testing would aid

in the continued improvement and contribution to this field.

There are two main areas of extension for this thesis project: first, the tech-

73

www.manaraa.com

74

nology used for implementation and second, the scope of the algorithm. When we

discuss the technology of implementation, we are discussing the efficiency in how

the algorithm uses its resources and the ease of use by the user. A JAVA runtime

environment is used for this current implementation. Little regard was given to

the execution time of the algorithm. Improvements in this area are definite if this

implementation of the k-AmbgNN Algorithm is to be distributed commercially.

Extensions that allow the user to graph accuracies directly from the application

are also a good idea for a properly constructed standalone application. Packages

for MatLab would aid the adoption of the algorithm by the scientific community

as well. If this algorithm presented in this thesis were a part of a larger Machine

Learning program that would include other pattern recognition approaches, then

again that would aid in its adoption.

With regards to the algorithm, we limited our research to the simple case

of instance-based classifiers, specifically k-Nearest Neighbor algorithm. Weighted

distance algorithm along with other case-based approaches should be considered for

comparison or alteration to account for ambiguous attribute labels. As mentioned

earlier, it is our intention to bring this data use case to the attention of the scientific

community with the hopes that other classification approaches will be looked at

again.

As data sets grow and algorithms mature, the machine learning community

will look for new ways to improve upon old ideas and processes to better simulate

what goes on in the world around us. To crack the shell of real learning is the

ultimate goal. This research is very important because as humans we make deci-

sions on associations (generalizations) on imperfect data every moment of every

day. Accounting for these imperfections, or ambiguity, should be the focus of these

data mining and pattern recognition algorithms to come. I stand on the shoulders

www.manaraa.com

75

of those who started down the path like Vannoorenberghe and Denoeux with their

work with uncertain labels in belief decision trees.

Having surmised that classical nearest neighbor classifiers may be inadequate

to deal with ambiguously described examples, a new modification to the traditional

is suggested, k-AmbigNN (ambiguous nearest neighbor). Through the course of

experimentation the k-AmbigNN algorithm had its performance compared with

that of the classical k-NN rule and with that of a solution suggested by the fuzzy-

sets community.

Importantly, it was realized that ambiguous domains call for a specially de-

signed performance metric and voting scheme. The experiments with three dif-

ferent domains indicate that the performance of the k-AmbigNN compares very

favorably with the performance of modest modifications of the classical k-NN clas-

sifier and with k-fuzzyNN. While k-NN apparently suffers from the replacement of

partial ambiguity with total ambiguity, k-fuzzyNN seems to have been meant for

more sophisticated uncertainties than those encountered in the tested domains.

One may complain that the experiments were not performed on a large set of

benchmark domains as is common in the many machine-learning projects. The

truth is that it was found that in the UCI repository only one such domain,

university existed. It is speculated that other UCI domains might originally

have contained ambiguities, too, but their authors sanitized them because the

community was only used to totally unknown attribute values. However, the ex-

perience reported in this treatment indicates the fact that, say, season is either

spring or summer—but not fall or winter—is qualitatively different from the

”question-mark” situation and should not be ignored.

Finally, the work suggests there is a need to search for better methods to

quantify such aspects as the degree of data ambiguity. It is the contention of this

www.manaraa.com

76

thesis to present one possible method for defining the ambiguity and handling the

assignment in a robust manner. A simple solution has been presented here.

There is work being done at the University of Miami in Coral Gables, Florida,

to use the Dempster-Shafer approach of accounting for ambiguous data and ap-

plying it to the attribute vectors of a Bayesian classifier. This work along with

the research presented in this thesis lay the groundwork for other approaches to

this ambiguous input pattern recognition problem. The ramifications are wide,

spreading from medical diagnosis systems that are able to better predict outcomes

based on imperfect data to Homeland Security issues with giving confidence to

possible terrorist actions from data-mined phone conversations. The biggest place

an algorithm like this can impact is real time image recognition. Again, this all

comes back to the simple pattern recognition problem whether it can be done with

imperfect data to an acceptable level of accuracy.

www.manaraa.com

LIST OF REFERENCES

[1] Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Al-

goritms, Plenum Press, New York

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regres-

sion Trees. Belmont, CA: Wadsworth International Group, 1984.

[3] B. Dasarathy, Nearest-Neighbor Classification Techniques. Los Alomitos, CA:
IEEE Computer Society Press, 1991.

[4] Dietterich, T. G. (1998). Approximate Statistical Tests for Comparing Su-
pervised Classification Learning Algorithms. Neural Computation, 10 , (7)
pp. 1895–1924.

[5] Denoeux, T. (1995). The k-Nearest Neighbor Classification Rule Based on
Dempster-Shafer Theory. IEEE Transactions on Systems, Man, and Cyber-

netics , Vol.25, pp. 804–813

[6] Denoeux, T. and Skarstein, M. (2000). Induction of Decision Trees from Par-
tially Classified Data Using Belief Functions, Proceedings of SMC pp. 2923–
2928

[7] Dunn, J.C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use
in Detecting Compact Well-Separated Clusters, Journal of Cybernetics 3:
pp. 32–57

[8] Elouedi, Z. Mellouli, and K. Smets, P. (2001). Belief Decision Trees: Theo-
retical Foundations International Journal of Approximate Reasoning Vol.28,
pp. 91–124

[9] R. Fisher, The Use of Multiple Measurement in Taxonomic Problems. 7,
111–132: Annals of Eugenics, 1936.

[10] Ham, F. M. and Kostanic ,I.,Principlces of Neurocomputing for Science and

Engineering. New York, NY, United States of America: McGraw-Hill, 2001.

[11] Keller, J. M., Gray, M. R, and Givens, J. A. (1985) A Fuzzy k-Nearest Neigh-
bor Algorithm. IEEE Transactions on Systems, Man and Cybernetics , 15(4),
pp. 80–85.

[12] T. Mitchell, Machine Learning. McGraw-Hill, 1997.

[13] Newman, D.J., Hettich, S., Blake, C.L. and Merz, C.J.
(1998). UCI Repository of Machine Learning Databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: Uni-
versity of California, Department of Information and Computer Science.

77

www.manaraa.com

78

[14] J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA: Elsevier B.V., 2004.

[15] G. Shafer, Dempster-Shafer Theory. United States of America: online, 1999.

[16] Shafer, Glen (1997). A Mathematical Theory of Evidence, Princeton Univer-
sity Press

[17] Shafer, G., and Pearl, J. (eds.) (1990). Readings in Uncertain Reasoning .
Morgan Kaufmann.

[18] Vannoorenberghe, P. (2004). On Aggregating Belief Decision Trees Informa-

tion Fusion, Vol. 5, pp. 179–188

[19] Vannoorenberghe, P. & Denoeux, T (2002). Handling Uncertain Labels in
Multiclass Problems Using Belief Decision Trees.Proceedings of IPMU’2002,
Anneey, France, pp. 1919–1926

[20] I. Witten and E. Frank, Data Mining Practical Machine Learning Tools and

Techniques with JAVA Implementations. 72–75, 114–118. here: Morgan
Kaufmann Pub., 2000.

[21] Z. Elouedi, K. Mellouli, and P. Smets, Classification with Belief Decision

Trees. Universite Libre de Bruxelles: IRIDIA, 2001.

	University of Miami
	Scholarly Repository
	2007-01-01

	Treatment of Instance-Based Classifiers Containing Ambiguous Attributes and Class Labels
	Hans Mullinnix Holland
	Recommended Citation

	thesis.dvi

